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The Effect of Nonlinearities on Flexible Structures

by

Ali H. Nayfeh and Dean T. Mook

Engineering Science and Mechanics Department

Virginia Polytechnic Institute and State University

Blacksburg, VA 24061

Abstract

The project is a theoretical and experimental investigation into the

influence of nonlinearities on flexible structures in the presence of

multifrequency parametric and external excitations having independent

frequencies and phases and arbitrary amplitudes. The nonlinearities and

excitations may appear in the governing equations, or the boundary

conditions, or both. The study focused on resonance conditions that produce

large and possibly damaging motions. Special attention was given to modal

coupling and exchanges of energy. We classified the important resonances

and their interactions and devised experiments illustrating the phenomena.

I. Summary of Findings

The reported research investigated theoretically and experimentally the

response of flexible structural systems to multifrequency excitations. The

excitations may be external (appear as inhomogeneous terms in the governing

equations and boundary conditions) or parametric (appear as time-dependent

coefficients in the governing equations and boundary conditions). The sources

of the nonlinearities in the governing equations may be geometric, or inertial,

or material, or any combination. The geometric nonlinearity stems from

nonlinear strain-displacement relations (e.g., mid-plane stretching, large

curvatures of structural elements, and large rotations of elements), the inertial

nonlinearity may be caused by the presence of concentrated or distributed

masses (in a Lagrangian formulation, the kinetic energy is a function of the
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generalized coordinates as well as their rates), and the material nonlinearity

occurs when the stresses are nonlinear functions of the strains. The

nonlinearities may appear in the governing partial differential equations, or the

boundary conditions, or both. The form of the nonlinearity appearing in the

equations and boundary conditions depends on the coordinate system being

used.

1.1 Parametric Resonances

Modeling a system that is subjected to a parametric excitation by linear

equations and boundary conditions is unrealistic if the parametric excitation

leads to an instability because such a model predicts unlimited amplitudes.

The predicted growth of the response is exponential. Consequently, a more

realistic model includes nonlinear terms which act as limiters of the predicted

response. Moreover, the linear model may predict a parametric stability (i.e.,

decaying response), when the actual response may not decay under certain

conditions. In this case, the parametric excitation produces a so-called

subcritical instability that is only predictable by including nonlinear terms.

Zavodney and Nayfeh studied the nonlinear response of a slender

continuous beam with a concentrated mass located between the ends. The

support undergoes a harmonic motion as shown in Figure 1. The motion is

governed by the fclowing nonlinear integro-partial-differential equation:

[p + mb(s - d)]v + cv + EI{viv + 1v'(v'v")']'}
-a (1)

a [J,5(s - d)(v')tt] - (Nv') = 0asas

where

S fo 1 1(2)
- m(I - g) ( dndc + -t- pL l - L)(] -(2)

SfL
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the prime indicates the derivative with respect to the spatial argument, and the

overdot indicates the derivative with respect to the time t. The boundary

conditions are

v(O,t) = 0, v'(O,t) = 0, v"(L,t) = 0, v"'(L,t) = 0 (3)

Using a combination of the Galerkin procedure and the method of multiple

scales, we determined a first-order uniform expansion when z(t) = fcos fQt.

A typical frequency-response curve is shown in Figure 2. Here, 0 = K/co,

where coo is the linear natural frequency of the lowest mode of vibration, and

the dashed curves represent unstable solutions. Figure 3, which corresponds

to region II of Figure 2, shows that parametric vibrations exist only when the

excitation amplitude exceeds a threshold value. When the frequency of the

excitation is increased to region Ill, the frequency-response curve is

multivalued, resulting in a subcritical instability. This is shown in Figure 4.

We conducted experiments for composite and metallic beams. For the

composite beam, we fabricated a symmetrical 0 - 90 - 90 - 0° 4-ply

graphite-epoxy composite plate 0.022 inches thick and cut it into strips one-half

inch wide. The frequency-response curves of the composite beam for three

leveis of excitation amplitude are shown in Figure 5. We observe that the

general behavior is as predicted by the theory. There is, however, a maximum

frequency at which point further increases in the frequency cause a jump down

to the lower branch. We also note the appearance of chaotic behavior for the

largest amplitude response; it was preceded by a modulation in the amplitude.

We observe a penetration of a stable parametric resonance. InsiJe this
"unstable" region small disturbances decayed and large disturbances grew,

but as the region was penetrated, the disturbances that decayed became

smaller and smaller until the trivial solution become unstable to all

disturbances. We also see the lower branch lifting off the frequency axis as the

frequency is decreased from above. This behavior was not predicted and

appears to be intensified due to the higher level and nonlinear nature of the

damping present in the composite beam.
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The nature of the parametric resonance for 4 = 2.000 and for a table

acceleration level of 1.00g is shown in Figure 6(a). When the excitation

frequency is increased to 0 = 2.013 and the model is released from rest, the

lower branch attracts the response, as shown in Figure 6(b). After the system

achieves steady state, it is disturbed, and we note that the disturbance causes

the system to jump up to the large amplitude response. Here the system

modulates and does not achieve a constant steady-state amplitude.

For the metallic beam experiments, we fabricated a flexible steel beam,

instrumented it with a strain gage, and fitted it with a small mass. The

frequency-response curve is shown in Figure 7. We again note a penetration

of a stable trivial solution into the region predicted to be unstable by the

theory, and we note a modulation in the large steady-state amplitude just

before it jumps down. The amplitude response for 0 =2.000 is shown in

Figure 8. These results also show remarkable agreement with the theory (see

Figure 3).

1.2 Single-Degree-of-Freedom Systems

Including nonlinearity in the governing equations can lead to the

prediction of a whole range of phenomena that are not found in linear

mathematical models, but are found in the actual structures. In

single-degree-of-freedom systems subject to stationary excitations, these

phenomena include multiple solutions, jumps, limit cycles, frequency

entrainment, natural frequency shift, and subharmonic, superharmonic,

combination, and ultrasubharmonic resonances, period-multiplying

bifurcations, and chaotic motions.

Nonlinear mathematical models predict that the devastating effects of a

one-harmonic load having a frequency near the natural frequency might be

lowered to a tolerable level by simply adding one or more nonresonant

harmonic loads, which can shift the natural frequency [1]. They also predict

that the large response can be significantly reduced by simply &dding other

resonant loads having the proper amplitudes and phases [3]. For example, the

large response of single-degree-of-freedom system with quadratic and cubic
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nonlinearities to a parametric excitation only is shown in Figure 9b, the

response of the same system to a subharmonic excitation only is shown in

Figure 9a, the response to the combined excitations when the relative phase

angle T = 0, is shown in Figure 9c, and the response to both excitations when

T = ir is shown in Figure 9d. Figure 9 demonstrates the dramatic quenching

of the response of the system to a principal parametric excitation by the

addition of a subharmonic excitation, which by itself does not excite the

system [3]. A third prediction is that when the sum of three frequencies in the

load equals or nearly equals the natural frequency, the system can experience

a combination-resonant response in which the peak amplitudes are several

times larger than those predicted by linear theory [1]. An example is shown

in Figure 10. A fourth prediction is that variations in the amplitude and phase

of an excitation can strongly influence the response of nonlinear systems [1].

In Figure 11, we compare the stationary and nonstationary responses of a

system to a primary excitation. It follows from this figure that the response

depends strongly on the rate r of the increase or decrease of the amplitude k

of the excitation. Thus, the present example clearly illustrates the need to

consider nonstationary effects in determining the response of structural

elements.

1.3 Multi-Degree-of-Freedom Systems

Besides the above phenomena, the response of multidegree-of-freedom

systems to periodic excitations can exhibit combinational resonances and

what is generally referred to as modal interactions; the latter may provide a

coupling or an energy exchange among the system's modes (1,4]. This

coupling can dominate the response of systems having some modes that are

involved in internal or autoparametric resonances (i.e., the linear natural

frequencies w, are commensurable or nearly commensurable).

The types of internal resonances depend on the degree of the nonlinearity.

When the nonlinearity is cubic, internal resonance may occur if WnWcom,

in'3aO,,, , I ±- 2wo, + e I , or wo, I ( co,, + ± co± , 1. When the nonlinearity
is quadratic, besides the above resonances, internal resonances may occur if
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4.•

,,2o,,, or +,, (o. A. In contrast with single-degree-of-freedom systems in

which combination resonance occur only if the excitation involves multiple

frequencies, combination resonances may be exhibited in the response of

multidegree-of-freedom systems to a single-harmonic excitation of frequency

92. The type of combination resonance that can be excited depends on the

degree of the nonlinearity. For a cubic nonlinearity, combination resonances

may have one or more of the following forms: Q. 1 ± COr,+o, I,

, +co 2o.. I, or 1- I + , + co. I. For a quadratic nonlikiearity,

combination resonances may have the form 92-l + co, + a), I, besides the

above forms

Internal resonances are responsible for many interesting, unusual, and

dangerous phenomena. For example, they are responsible for the instability

of the planar motions of a string or a symmetric beam resulting from a

harmonic planar force [1,5,6]. Experiments show, and the nonlinear analysis

predicts, that the response of a string or a symmetric beam to a plane

harmonic excitation is planar provided the excitation amplitude is below a

critical value. Above this critical value, the planar motion becomes unstable

and gives way to a nonplanar, whirling motion. The whirling motion is a direct

consequence of the fact that the natural frequency for motion in the plane of

the excitation is the same as the natural frequency for motion in the plane

perpendicular to the plane of the excitation.

1.4 One-to-One Autoparametric Resonances

As an example, Nayfeh and Pai [5] theoretically investigated the planar

and nonplanar responses of a fixed-free beam to a principal parametric

excitation. The beam is assumed to undergo flexure about two principal axes

and torsion, as shown in Figure 12. The equations governing the parametric

vibration of the system shown in Figure 12 are

7



+ cv + flyV1v = (1 - fly WI v"w"ds - wi" v"w'ds

0 JV"W"dsds - V'(V'V" + ww")- (4)

2 fV {J 2 [ fJ(V,2 + W,2)dSlds [v"(s - 1) + v']BE 2 cos(fgt)

S+ cw + w V = - (1- fy) v vw"ds - v'1 w"v'ds

( 1] f
(1 y" It"J v"W"dsdsl - / [(v'v" ± w'w")']' (5)

fly r- fo <f [ rI"

- [W'[S(v' + w'2)ds ] - [- w"(s -1) ± w']Bf? cos( t)]

and the boundary conditions are

v=w=v'=w'=O at s=0 (6)

v" = w" = v". = w'" = 0 at s = 1 (7)

Equations (4) and (5) contain cubic nonlinearities due to curvature and inertia.

Nayfeh and Pai considered two uniform beams with rectangular cross

sections: one has an aspect ratio near unity, and the other has an aspect ratio

near 6.27. In both cases, the beam possesses a one-to-one internal resonance

with one of the natural flexural frequencies in one plane being approximately

equal to one of the natural flexural frequencies in the second plane.

We used a combination of the Galerkin procedure and the method of

multiple scales to construct a first-order uniform expansion for the interaction

of the two resonant modes, obtaining four first-order nonlinear

ordinary-differential equations governing the amplitudes and phases of the

modes of vibration. Figure 13 shows the response curves of the first mode.

It is well known that, for planar responses, if only in-plane disturbances are

considered then the upper branch of a2 will be stable. But this branch can be
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unstable to disturbances in the y-direction. We note that the planar response

curves are bent to the right, which implies that the nonlinear geometric terms

dominate the response because they have a hardening effect.

Neglecting the nonlinear geometric terms, we obtained the response

curves shown in Figure 14. Comparing Figures 13 and 14 shows that

neglecting the geometric nonlinearity yields frequency curves that are even

qualitatively wrong. The nonlinearity changes from a hardening to a softening

type. Moreover, nonplanar responses cannot be predicted without including

the geometric nonlinearity.

As a decreases from a value larqer than that corresponding to point B in

Figure 13, the nonplanar fixed point loses stability with a complex conjugate

pair of eigenvalues moving into the right-half plane. This corresponds to the

extensively studied Hopf bifurcation. Based on the Hopf bifurcation theorem,

one expects amplitude- and phase-modulated motions for values of a near B.

We note that all the nonplanar response curves are bent to the right even for

the second mode. This is not unexpected because as discussed earlier the

nonlinear geometric terms control the nonplanar motion. For the first mode,

the nonlinear geometric terms have a hardening effect, and hence the

amplitudes of nonplanar motion are smaller than those of planar motion. On

the other hand, for the second mode, the nonlinear geometric terms overcome

the inertia terms and produce nonplanar motions that are larger than the

planar motions. Using a Runge-Kutta routine to integrate the modulation

equations in the region between the Hopf bifurcation points for a long period

of time, we obtained the amplitude-modulation behavior shown in Figure 15.

Figure 16 shows the projection of the attractor on the a2 - a, plane. Since the

amplitudes and phases are not constant but periodic with a period that is

larger than that corresponding to free oscillations, the resulting motion is

nonperiodic having two periods (i.e., motion on a torus). The spectrum of a,

in Figure 17 shows that the fundamental dimensionless frequency of the

attractor is approximately 0.154 and hence its dimensionless period is

approximately 6.5. This motion can be better visualized by plotting the motion

of the tip-end of the beam, as shown in Figure 18. This figure shows that the
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elliptical route keeps changing the lengths of axes and direction, and it also

shows the twisting motion. Because of the nonlinear terms, the inertia force

in the y-direction is not proportional to v(s,t) and the inertia force in the

z-direction is not proportional to w(s,t), and hence the resultant inertia force
is not parallel to the total displacement in the y-z plane and it induces a
twisting moment on the beam. This is a whirling motion of the beating type.

1.5 Two-to-One Autoparametric Resonances

Two-to-one autoparametric or internal resonances (i.e., w02 2w1 ) are

responsible for saturation in the response of systems with quadratic

nonlinearities [1,4,7,8]. When the second mode is excited by a

single-harmonic load of amplitude F and frequency 0) 2, one expects the

second mode to be dominant; initially this is so. But as F increases above a

critical value Fc, the second mode becomes saturated and the additional

energy spills over into the first mode (see Figure 19). The threshold value F,

depends on the damping and detunings of the resonances and can be very

very small. Thus, the region of validity of the linear solution can be very very

small, and consequently, controls based on linear theory may lead to

undesirable conditions. Saturation was predicted oy the nonlinear analysis

and has recently been observed experimentally in structures consisting of

metallic beams and concentrated masses. An example of these structures is

shown in Figure 20. It consists of two light-weight steel beams and two

concentrated masses. The mass on the vertical beam can be moved up and

down to adjust the natural frequencies. The first two natural frequencies are

below 25 Hz, whereas the third natural frequency is above 100 Hz. The first

two frequencies correspond to the lowest two flexural modes whereas the third

frequency corresponds to the first torsional mode. Hence, at low excitation

frequencies, this structure is essentially a two-degree-of-freedom structure.

When the second natural frequency 02 is approximately twice the first natural

frequency w1, we have found that nonlinear modal interactions exist between

these modes. Fixing the excitation frequency Q at a value near C02 and slowly

increasing the excitation amplitude F from zero, we have found that initially the

amplitude a2 of the second mode increases linearly with F while the amplitude
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a, of the first mode remains zero, in accordance with linear theory. However,

as F increases beyond a threshold value FC, a2 remains constant (saturates)

and the extra input energy spills over into the first mode, which grows rapidly

as F increases further. This is the saturation phenomenon. The response of

the structure consists of a combination of the two flexural modes. For certain

amplitudes and frequencies of the excitation, the response of the structure

ceases to be periodic and becomes either two-period quasi-periodic or chaotic

motion. However, in all cases, the motion continues to be planar consisting

of the two lowest flexural modes.

In preparing for the Sixth Annual Review of the Center for Composite

Structures and Materials on April 9-11, 1989, we thought to investigate whether

composite structures exhibit the above complicated behaviors that we

observed in the response of the metallic structures. To this end, we fabricated

a composite plate 85 mili-inch thick from 7781/ 5245C glass/epoxy, 00/900

woven fabric material by using the stacking sequence

[00/900/450/ - 4520/450/900/001. We cut the plate into 0.51" wide strips. We

used two composite strips of length 8" and two concentrated masses to build

a structure similar to that shown in Figure 21. We used an epoxy adhesive to

bond the composite strips to perpendicular faces of the junction mass. We

mounted the structure on the shaker and set the excitation level at about 60

mili g's and swept the frequency of excitation. To our surprise, the vertical

beam went into out-of-plane (torsional) vibrations for certain excitation

frequencies. Then we set the excitation frequency near 16.0 Hz and slowly

increased the excitation amplitude. Initially, the response was planar.

However, above a threshold excitation level, the vertical beam went into an

out-of-plane (torsional) vibration. The bonding provided by the adhesive did

not hold when the composite structure went into torsional motions. Therefore,

we replaced the adhesive bonding with an L-shaped clamp made of aluminum,

as shown in Figure 21.

To understand the physical mechanisms underlying these observations,

we instrumented the composite model by mounting strain gages along the

axes of the horizontal and vertical beams (referred to as Strain Gage H and
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Strain Gage V in Figure 21) to measure the displacements due to flexural

motions and strain gages on the top and bottom faces of the horizontal beam

at 450 to its axis (referred to as Strain Gage II in Figure 21) to measure the

displacements due to torsional motions. Also, we mounted an accelerometer

on the shaker table to measure the excitation amplitude. Using a combination

of free oscillations, random excitations, and sinusoidal sweeps, we found that

the two lowest flexural frequencies to be 5.58 Hz and 16.59 Hz and the lowest

torsional frequency to be 8.41 Hz. Thus, at low excitation frequencies, the

model is essentially a three-degree-of-freedom system, in contrast with the

metallic structure which is essentially a two-degree-of-freedom system. The

reason for the low torsional frequency of the composite structure is the relative

weakness in shear of composite laminates due to their low transverse shear

moduli. Thus, the composite structure has a low torsional stiffness, which in

turn implies that its torsional modes have lower natural frequencies than the

corresponding modes in the metallic structure.

We note that the second flexural frequency is approximately twice the

lowest torsional frequency and the second flexural frequency is approximately

three times the first flexural frequency. Thus, the structure possesses

two-to-one and three-to-one internal or autoparametric resonances. According

to our previous theoretical and experimental findings, we expect the

composite structure to exhibit nonlinear modal interactions. Because the

two-to-one autoparametric resonance is due to quadratic nonlinearities and

the three-to-one autoparametric resonance is due to cubic nonlinearities, the

excitation levels needed to activate the former resonance are far below those

needed to activate the second resonance. This is born out by our experiments.

We held the excitation frequency constant at 16.8 Hz, which is near the

natural frequency of the second flexural mode, and slowly swept up and down

the excitation amplitude. To distinguish linear from nonlinear motions and

periodic from nonperiodic motions, we used the following schemes:
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(a) visual observations of the model

(b) the cross-plots of the signals from the strain gages along the axes of

the laminates

(c) the Poinccre maps obtained by using the excitation frequency as the

clock frequency

(d) the FFT's of the accelerometer output and the strain gage signal

mounted on the vertical beam.

The experimentally determined response amplitudes from the FFT signals

are shown in Figure 22. The results obtained during the forward and reverse

sweeps are marked by circles and triangles, respectively. The symbols a; and

a correspond to the amplitudes of the second flexural mode and the torsional

mode, respectively. Initially, as the amplitude F of the excitation increases

from zero, the amplitude a; of the second flexural mode increases linearly with

F, whereas the amplitude a; of the torsional mode remains zero. As the

excitation amplitude exceeds a threshold, which is very small (in this case

about 11.0 mili g's), a2 remains constant (saturates) and a; increases rapidly

with F. Thus, the extra energy input to the second flexural mode spills over

into the torsional mode whose amplitude can increase dramatically, with

possible serious consequences to the integrity of the structure.

In another set of experiments, we found that the lowest two flexural

frequencies of the structure are 5.45 Hz and 16.42 Hz and the first torsional

frequency is 8.09 Hz. Again, for this configuration, two-to-one and three-to-one

autoparametric resonances exist, and one expects strong modal interactions

to exist between the second flexural mode and the first torsional mode. In this

set, we held the excitation amplitude constant at 59.0 mili g's and slowly varied

the excitation frequency around the second flexural frequency. In Figure 23,

we show the spectra of the accelerometer and strain gage V signals as well

as the cross-plots of the H and V signals at the excitation frequencies 16.10

Hz, 16.14 Hz, and 16.30 Hz. It follows from Figure 23a that at 16.10 Hz, the

response is linear. The output is at the same frequency as the input and the
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cross-plot of the H and V signals is a simple limit cycle, indicating the

presence of a single frequency in both the H and V signals. However, it follows

from Figure 23b that at 16.14 Hz, the response is nonlinear and periodic. Now

the output is at both the input frequency f and its one-half subharmonic -f.
2

Moreover, the cross-plot of the H and V signals is an eight-shaped pattern,

indicating the presence of two frequencies that are in the ratio of two-to-one in

the signals. The subharmonic signal corresponds to the torsional mode, which

was visually apparent at this frequency. It follows from Figure 23c that at 16.30

Hz, the response is nonlinear and nonperiodic. In addition to the presence of

the frequencies f and -- f in the output, there are also side bands, which
2

indicates the presence of two periods. If these periods are not

commensurable, one talks of a two-period quasi-periodic, or amplitude- and

phase-modulated, motion. The cross plot also indicates that the response is

nonperiodic because the eight-shaped pattern continues to evolve.

Furthermore, the torsional motion was clearly visible in the motion of the

model.

In our frequency sweeps, we found ranges of frequencies where the

response of the model is chaotic. An example of a chaotic response is shown

in Figure 24 at the excitation frequency 16.325 Hz. The upper plot is the FFT

of the V signal obtained by using a zoom span mode around 16.325 Hz

whereas the lower plot is the FFT of the V signal obtained by using a base

band mode. These spectra show broadband characters around the

frequencies f and f, indicating that the motion is a chaotically modulated,
2'

combined flexural-torsional motion. The Poinc.re maps for a periodically

modulated response (at 16.30 Hz) and a chaotically modulated response (at

16.325 Hz) are shown in Figure 25.

In summary, the dynamic behavior of the composite structure is both

qualitatively and quantitatively different from that of the metallic structure. The

low transverse shear moduli of composite laminates result in low torsional

stiffnesses, which in turn result in low natural frequencies in torsion.

Consequently, modal interactions between the flexural and torsional modes

may occur, resulting in out-of-plane motions even when the structure is driven
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by in-plane excitations. This behavior may have serious implications for the

integrity of composite structural elements and should be factored into their

design.
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the modulation of the amplitudes and the phases of the two modes. These

equations are used to determine steady state responses and their stability.

When the higher mode is excited by a principal parametric resonance, the

nontrivial steady state value of its amplitude is a constant that is

independent of the excitation amplitude, whereas the amplitude of the

lower mode, which is indirectly excited through the internal resonance,

increases with the amplitude of the excitation. However, in addition to

Poincar6-type bifurcations, this response exhibits a Hopf bifurcation

leading to amplitude- and phase-modulated motions. When the lower

mode is excited by a principal parametric resonance, the averaged

equations exhibit both Poincard and Hopf bifurcations. In some intervals

of the parameters, the periodic solutions of the averaged equations, in the

latter case, experience period-doubling bifurcations, leading to chaos.

2. A. H. Nayfeh and A. A. Khdeir, "Rolling of Ships in Large-Amplitude

Waves," Dynamical Systems Approaches to Nonlinear Problems In

Methods for the Analysis of Nonlinear Dynamics, New England College,

Henniker, New Hampshire, June 8-13, 1986; also edited by Fathi M. A.

Salam and Mark Levin, SIAM, 1988, pp. 290-303.

A second-order approximate solution is presented for the nonlinear

rolling response of ships in regular beams waves. A Floquet analysis is

used to predict the stability of limit-cycle responses. The perturbation

results are compared with solutions obtained by numerical integration of

the nonlinear governing roll equation. The results show that the first-order

perturbation expansion may be inadequate for predicting the peak roll

angle and its corresponding frequency. On the other hand, the peak of the

stable roll angle and corresponding frequency predicted by the

second-order expansion are found to be in good agreement with the

numerical simulation. Moreover, the perturbation expansion predicts fairly

well the start of period multiplying bifurcations that lead to chaos. Biased

ships are found to be more susceptible to period multiplying bifurcations

and chaos than unbiased ships.
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3. Zavodney, L. D. and Nayfeh, A. H., "The Response of a
Single-Degree-of-Freedom System with Quadratic and Cubic
Non-Linearities to a Fundamental Parametric Resonance," Journal of

Sound and Vibration, Vol. 120(1), 1988, pp. 63-93.

The response of a one-degree-of-freedom system with quadratic and

cubic nonlinearities to a fundamental harmonic parametric excitation is

investigated. The method of multiple scales is used to determine the

equations that describe to second order the modulation of the amplitude

and phase with time about one of the foci. These equations are used to

determine the fixed points and their stability. The perturbation results are

verified by integrating the governing equation using a digital computer and

an analogue computer. For small excitation amplitudes, the analytical
results are in excellent agreement with the numerical solutions. As the

amplitude of the excitation increases, the accuracy of the perturbation

solution deteriorates, as expected. The large responses are investigated

by using both a digital and an analogue computer. The cases of single-

and double-well potentials are investigated. Systems with double-well

potentials exhibit complicated dynamic behaviors including period
multiplying and demultiplying bifurcations and chaos. Long-time histories,

phase planes, Poincard maps, and spectra of the responses are presented.

4. Nayfeh, A. H. and Zavodney, L. D., "Experimental Observation of
Amplitude- and Phase-Modulated Responses of Two Internally Coupled
Oscillators to a Harmonic Excitation," Journal of Applied Mechanics, Vol.

110, 1988, pp. 706-710.

An experiment is performed on a two-degree-of-freedom mechanical
system having quadratic nonlinearities and linear natural frequencies co,

and w02 approximately in the ratio of two-to-one (i.e., w2z2wo1). When the

lower mode is excited by a harmonic excitation whose frequency f2 is

nearly equal to co,, amplitude- and phase-modulated responses of the

system have been observed for a range of the excitation frequency 02, in
qualitative agreement with the results of a second-order perturbation

theory.
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5. Nayfeh, A. H. and Asfar, K. R., "Non-Stationary Parametric Oscillations,"

Journal of Sound and Vibration, Vol. 124(3), 1988, pp. 529-537.

The response of a single-degree-of-freedom system with cubic

nonlinearity to a nonstationary principal parametric excitation is

investigated. The method of multiple scales is used to derive two

first-order ordinary-differential equations for the evolution of the amplitude

and phase of the response. The evolution equations are numerically

integrated for various sweeping rates of the amplitude and frequency of

the excitation. The results show that the nonstationary response

penetrates the instability regions and the higher the sweeping rate is the

deeper the penetration is.

6. Nayfeh, A. H. and Pal, P. F., "Non-Linear Non-Planar Parametric

Responses of an Inextensional Beam," International Journal of Non-Linear

Mechanics, Vol. 24(2), 1989, pp. 139-158.

The nonlinear integro-differential equations of motion for an

inextensional beam are used to investigate the planar and nonplanar

responses of a fixed-free beam to a principal parametric excitation. The

beam is assumed to undergo flexure about two principal axes and torsion.

The equations contain cubic nonlinearities due to curvature and inertia.

Two uniform beams with rectangular cross sections are considered: one

has an aspect ratio near unity, and the other has an aspect ratio near 6.27.

In both cases, the beam possesses a one-to-one internal resonance with

one of the natural flexural frequencies in one plane being approximately

equal to one of the natural flexural frequencies in the second plane. A

combination of the Galerkin procedure and the method of multiple scales

is used to construct a first-order uniform expansion for the interaction of

the two resonant modes, yielding four first-order nonlinear

ordinary-differential equations governing the amplitudes and phases of the

modes of vibration. The results show that the nonlinear inertia terms

produce a softening effect and play a significant role in the planar

responses of high-frequency modes. On the other hand, the nonlinear

geometric terms produce a hardening effect and dominate the planar
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responses of low-frequency modes and nonplanar responses for all

modes. If the nonlinear geometric terms were not included in the

governing equations, then nonplanar responses would not be predicted.

For some range of parameters, Hopf bifurcations exist and the response

consists of amplitude- and phase-modulated or chaotic motions.

7. Zavodney, L. D., Nayfeh, A. H., and Sanchez, N. E., "The Response of a

Single-Degree-of-Freedom System with Quadratic and Cubic

Nonlinearitles to a Principal Parametric Resonance," Journal of Sound and

Vibration, Vol. 129(3), 1989, pp. 417-442.

The response of a one-degree-of-freedom system with quadratic and

cubic nonlinearities to a principal parametric resonance is investigated.

The method of multiple scales is used to determine the equations that

describe to second order the modulation of the amplitude and phase with

time about one of the foci. These equations are used to determine the

fixed points and their stability. The perturbation results are verified by

integrating the governing equation using a digital computer and an

analogue computer. For small excitation amplitudes, the analytical results

are in excellent agreement with the numerical solutions. The large

amplitude responses are investigated using both a digital and an analogue

computer. The cases of single- and double-well potentials are

investigated. Systems with double-well potentials exhibit complicated

dynamic behaviors including period-multiplying and demultiplying

bifurcations and chaos. In some cases, a bifurcated response coexists with

another periodic attractor, and a chaotic attractor coexists with a periodic

attractor. Long-time histories, phase planes, Poincar6 maps, fractal basin

maps, and spectral of the response are presented. A bifurcation diagram

of many solutions in the excitation amplitude-excitation frequency plane is

also presented.

8. Zavodney, L. D. and Nayfeh, A. H., "The Non-Linear Response of a Slender

Beam Carrying a Lumped Mass to a Principal Parametric Excitation:

Theory and Experiment," International Journal of Non-Linear Mechanics,

Vol. 24(2), 1989, pp. 105-125.
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The non-linear response of a slender cantilever beam carrying a

lumped mass to a principal parametric base excitation is investigated

theoretically and experimentally. The Euler-Bernoulli theory for a slender

beam is used to derive the governing non-linear partial differential

equation for an arbitrary position of the lumped mass. The non-linear

terms arising from inertia, curvature and axial displacement caused by

large transverse deflections are retained up to third order. The linear

eigenvalues and eigenfunctions are determined. The governing equation

is discretized by Galerkin's method, and the coefficients of the temporal

equation-composed of integral representations of the eigenfunctions and

their derivatives-are computed using the linear eigenfunctions. The

method of multiple scales is used to determine an approximate solution of

the temporal equation for the case of a single mode. Experiments were

performed on metallic beams and later on composite beams because all

of the metallic beams failed prematurely due to the very large response

amplitudes. The results of the experiment show very good qualitative

agreement with the theory.

9. Nayfeh, A. H. and Balachandran, B., "Modal Interactions in Dynamical and

Structural Systems," Applied Mechanics Reviews, Vol. 42(11), 1989, pp.

175-201.

We review theoretical and experimental studies of the influence of

modal interactions on the nonlinear response of harmonically excited

structural and dynamical systems. In particular, we discuss the response

of pendulums, ships, rings, shells, arches, beam structures, surface waves,

and the similarities in the qualitative behavior of these systems. The

systems are characterized by quadratic nonlinearities which may lead to

two-to-one and combination autoparametric resonances. These

resonances give rise to a coupling between the modes involved in the

resonance leading to nonlinear periodic, quasi-periodic, and chaotic

motions.
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10. Neal, H. L. and Nayfeh, A. H., "Response of a Single-Degree-of-Freedom

System to a Nonstationary Principal Parametric Excitation," International

Journal of Non-Linear Mechanics, November 1989.

We examine the nonstationary response of a one-degree-of-freedom

nonlinear system to a nonperiodic parametric excitation with varying

frequency. We use the method of multiple scales to obtain equations

governing the stationary and nonstationary responses of the system, and

we analyze the stability of the stationary responses. The response

displays several phenomena, including penetration of the trivial response

into the unstable trivial region, oscillation of the response about the

nontrivial stationary solution, convergence of the nonstationary response

to the stationary solution, lingering of the nontrivial response into the

stable trivial region, and rebounding of the nontrivial response. These

phenomena are affected by the sweep rate, the initial conditions, and the

system parameters. We use digital and analog computers to solve the

original governing differential equation. The results of the simulations

agree with each other and with those obtained by using the method of

multiple scales.

11. Nayfeh, A. H., Balachandran, B., Colbert, M. A., and Nayfeh, M. A., "An

Experimental Investigation of Complicated Responses of a

Two-Degree-of-Freedom Structure," Journal of Applied Mechanics, Vol.

56(4), 1989, pp. 960-967.

Recent theoretical studies indicate that whereas large excitation

amplitudes are needed to produce chaotic motions in

single-degree-of-freedom systems, extremely small excitation levels can

produce chaotic motions in multi-degree-of-freedom systems if they

possess autoparametric resonances. To verify these results, we conducted

an experimental study of the response of a two-degree-of-freedom

structure with quadratic nonlinearities and a two-to-one internal resonance

to a primary resonant excitation of the second mode. The responses were

analyzed using hardware and software developed for performing

time-dependent modal decomposition. We observed periodic,
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quasi-periodic, and chaotic responses, as predicted by theory. Conditions

were found under which extremely small excitation levels produced

chaotic motions.

12. Sanchez, N. E. and Nayfeh, A. H., Prediction of Bifurcations In a
Parametrically Excited Duffing Oscillator," International Journal of

Non-Linear Mechanics, 1990.

The instability regions of the response of a damped, softening type

Duffing oscillator to a parametric excitation are determined via an

algorithm that uses Floquet theory to evaluate the stability of second-order

approximate analytical solutions in the neighborhood of the nonlinear

resonances of the system. It is shown that identification of the locus of

instabilities of the periodic approximate solutions in the

amplitude-frequency parameter space provides valuable information on

the overall dynamic behavior of the system. The predictions are verified

by using analog- and digital-computer simulations, which exhibit chaos

and unbounded motions among other behaviors.

13. Nayfeh, A. H. and Serhan, S. J., "Response Statistics of Nonlinear Systems
to Combined Deterministic and Random Excitations," International Journal

of Non-Linear Mechanics, 1990.

A second-order closure method is presented for determining the
response of nonlinear systems to random excitations. The excitation is

taken to be the sum of a deterministic harmonic component and a random

component. The latter may be white noise or harmonic with separable

nonstationary random amplitude and phase. The method of multiple

scales is used to determine the equations describing the modulation of the

amplitude and phase. Neglecting the third-order central moments, we use

these equations to determine the stationary mean and mean-square

response. The effect of the system parameters on the response statistics

is investigated. The presence of the nonlinearity causes multi-valued

regions where more than one mean-square value of the response is

possible. The local stability of the stationary mean and mean-square
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responses is analyzed. Alternatively, assuming the random component of

the response to be small compared with the mean response, we determine

steady-state periodic responses to the deterministic part of the excitation.

The effect of the random part of the excitation on the stable periodic

responses is analyzed as a perturbation and a closed-form expression for

the mean-square response is obtained. Away from the transition zone

separating stable and unstable periodic responses, the results of these two

approaches are in good agreement. Comparisons of the results of these

methods with that obtained by the method of equivalent linearization are

presented.

14. Pal, P. F. and Nayfeh, A. H., "Nonlinear Nonplanar Oscillations of a

Cantilever Beam Under Lateral Base Excitations," International Journal of

Non-Linear Mechanics, 1990.

The nonplanar responses of a cantilevered beam subject to lateral

harmonic base-excitation is investigated using two nonlinear coupled

integro-differential equations of motion. The equations contain cubic

nonlinearities due to curvature and inertia. Two uniform beams with

rectangular cross sections are considered: one has an aspect ratio near

unity, and the other has an aspect ratio near 6.27. A combination of the

Galerkin procedure and the method of multiple scales is used to construct

a first-order uniform expansion for the case of a one-to-one internal

resonance and a primary resonance. The results show that the nonlinear

geometric terms are important for the responses of low-frequency modes

because they produce hardening spring effects. On the other hand, the

nonlinear inertia terms dominate the responses of high-frequency modes.

We also obtain quantitative results for nonplanar motions and investigate

their dynamic behavior. For different range of parameters, the nonplanar

motions can be steady whirling motions, whirling motions of the beating

type, or chaotic motions. Furthermore, we investigate the effects of

damping.
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15. Nayfeh, A. H., Raouf, R. A., and Nayfeh, J. F., "Nonlinear Response of

Infinitely Long Circular Cylindrical Shells to Subharmonic Radial Loads,"

Journal of Applied Mechanics, 1990.

The method of multiple scales is used to analyze the nonlinear

response of infinitely long circular cylindrical shells (thin circular rings) in

the presence of a two-to-one internal (autoparametric) resonance to a

subharmonic excitation of order one-half of the higher mode. Four

autonomous first-order ordinary-differential equations are derived for the

modulation of the amplitudes and phases of the interacting modes. These

modulation equations are used to determine the fixed points and their

stability. The fixed points correspond to periodic oscillations of the shell,

whereas the limit-cycle solutions of the modulation equations correspond

to amplitude- and phase-modulated oscillations of the shell. The

first-response curves exhibit saturation, jumps, and Hopf bifurcations.

Moreover, the frequency-response curves exhibit Hopf bifurcations. For

certain parameters and excitation frequencies between the Hopf values,

limit-cycle solutions of the modulation equations are found. As the

excitation frequency changes, all limit cycles deform and lose stability

through either pitchfork or cyclic-fork (saddle-node) bifurcations. Some of

these saddle-node bifurcations cause a transition to chaos. The pitchfork

bifurcations break the symmetry of the limit cycles.

16. Nayfeh, A. H., Mook, D. T., and Nayfeh, J. F., "Some Aspects of Modal

Interactions in the Response of Beams," AIAA Paper No. 87-0777,

presented at the 28th Structures, Structural Dynamics and Materials

Conference, Monterey, CA, April 6-8, 1987.

Some aspects of modal interactions in the nonlinear response of

hinged-clamped beams to a harmonic excitation are investigated. The

analysis accounts for a static axial force, a restraining spring, and modal

damping. For such a beam, the second natural frequency Is approximately

three times the first natural frequency, a condition of internal or

autoparametric resonance. The method of multiple scales is used to

determine the equations that describe the modulation of the amplitudes
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and phases with damping, primary resonance caused by the excitation,

and nonlinearity including the autoparametric resonance. They fixed

points of these equations and their stability are determined. The

autoparametric resonance is found to produce a strong coupling of the

modes involved. For some range of parameters, Hopf bifurcations exist.

The first points lose their stability with the real part of a complex conjugate

pair of eigenvalues changes sign from negative to positive. In these

ranges, steady-state periodic solutions do not exist, contrary to results

predicted by linear multi-mode analyses or nonlinear single-mode

analyses. Instead, the energy is continuously exchanged between the

modes involved in the autoparametric resonance. Moreover, for small

damping, the response may experience period-multiplying bifurcations and

chaos.

17. Nayfeh, A. H., "Numerical-Perturbation Methods in Mechanics," Computers

& Structures, Voi. 30, No. 2, 1988, pp. 185-204.

In many nonlinear problems in mechanics, the responses are so

complicated (jumps, period-multiplying bifurcations, chaos, saturation) that

it is impractical if not impossible to determine their salient features by

using a purely numerical technique. For weakly nonlinear systems,

perturbation techniques can be used quite effectively. However, purely

analytical techniques are limited to systems with simple boundaries and

composition. These limitations can be removed by combining analytical

and numerical techniques. These points are illustrated by examples drawn

from structural vibrations, sloshing of liquids in containers, and nonlinear

stability of boundary layers. The combination of analytical and numerical

techniques also can be very useful for treating linear wave propagation in

nonhomogeneous media. The procedure is illustrated by an example:

intensification and refraction of acoustic signals in partially choked

converging-diverging ducts.

18. Nayfeh, A. H., "Application of the Method of Multiple Scales to Nonlinearly

Coupled Oscillators," Chapter III, from the Lasers, Molecules and

Methods, Advances in Chemical Physics Volume LXXIII, edited by
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Hirschfelder, Wyatt and Coalson, John Wiley & Sons, Inc., NY, 1989, pp.

137-196.

In this chapter, we investigate the response of two-degree-of-freedom

systems with quadratic nonlinearities to parametric and external resonant

excitations in the presence of two-to-one internal (autoparametric)

resonances. We use the method of multiple scales to construct a

first-order uniform expansion yielding four first-order nonlinear ordinary

differential (averaged) equations governing the modulation of the

amplitudes and the phases of the two modes. These equations are used

to determine periodic responses and their stability. The autoparametric

resonance produces a strong coupling of the modes involved. For some

range of parameters, Hopf bifurcations exist. The fixed points of the

averaged equations lose their stability when the real part of a

complex-conjugate pair of eigenvalues changes sign from negative to

positive. In these ranges, steady-state periodic solutions do not exist.

Instead, the response consists of amplitude- and phase-modulated motion,

and for small damping it may experience period multiplying bifurcations

and chaos.

19. Nayfeh, A. H., EI-Zein, S. M. and Nayfeh, J. F., "Nonlinear Oscillations of

Composite Plates Using Perturbation Techniques," Proceedings of the 4th

Technical Conference on Composite Materials, VPI&SU, Blacksburg, VA,

October 3-6, 1989, pp. 570-579.

The method of multiple scales is used to analyze the nonlinear

response of an antisymmetric cross-ply laminate to a harmonic load. The

classical lamination theory, including rotary inertia, is used. The case of

a two-to-one autoparametric resonance with the higher mode being excited

by a primary resonance is considered. The results show that the response

may exhibit jumps, saturation, and Hopf bifurcations.

20. Nayfeh, A. H. and Balachandran, B., "Experimental Investigation of

Resonantly Forced Oscillations of a Two-Degree-of-Freedom Structure,"

International Journal of Non-Linear Mechanics, November 1989.
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An experimental study of the response of a two-degree-of-freedom

structure with quadratic nonlinearities and a two-to-one internal resonance

to an external harmonic excitation is presented. When the excitation

frequency was close to the lower natural frequency of the structure

periodic, quasi-periodic, and chaotic responses were observed. Fourier

spectra, time-dependent modal decompositions, and Poinc~re maps were

used to analyze the amplitude- and phase-modulated motions of the

structure.
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Figure 1 Cantilevered beam with a concentrated mass subjected to vertical

base motion.
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Figure S. Frequency-response curves for three levels of excitation amplitude f

of the composite beam. Note that chaotic behavior occurs at the

largest amplitude of excitation.
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Figure 6. Spectral time history of the composite beam to a principal parametric

excitation: (a) = 2.000, (b) 4 = 2.013. Both responses start with the

trivial solution. When / 2.013 two solutions are possible.
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Figure 9. Response curves demonstrating the quenching and enhancement of
the principal parametric response by the addition of a subharmonic
excitation of order one-half; (a) response to subharmonic excitation
only, (b) response to parametric excitation only, (c) response to both
excitation with r = 0, and (d) response to both excitation with T = it.
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Figure 10. Response of the Duffing equation to a three-frequency excitation:
(a) linear case; (b) nonlinear case.
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Figure 11. Comparison of nonstationary and stationary response curves:
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several rates of changing k.
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Fligure 12. Coordinate systems: x-y-z - the Inertial reference frame;
- v - C = the principal axes of the beam's cross section at position

s, which is fixed on the cross section.
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Figure 13. Response curves of the first mode for a beam with an aspect ratio

b/h #0 1.0,: mode (1,1) oI = W21,, 0 = 0.0, 62 - 0.05,
/i = 0.05, b = 0.03, fy - 0.7692; a sub 1 , a sub 2 = planar response

amplitudes; a,, a2, = nonplanar response amplitudes; (_) stable,

( - - - ) unstable with at least one eigenvalue being positive, (. . . )

unstable with the real part of a complex pair of eigenvalues being

positive.
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Figure 14. Response curves of the first mode in the absence of the nonlinear
geometric terms, for a beam with an aspect ratio b/h #6 1.0,: mode
(1,1) Coll =C0 21 6o=0.0, = -62=- 0.05, p =0.05, b = 0.03, fl 0.7692; a
sub 1 , a sub 2 = planar response amplitudes; (.) stable, ( - - -)
unstable with at least one eigenvalue being positive.
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Figure 15. The long-time history of the amplitudes for the case of an amplitude-

and phase-modulated motion: b/h 9 1.0,: mode (1,1) (il ,--21,

0 = 0.00, 6 = - 0.05,= 0.05, b = 0.03,fly = 0.7692, o 0.0353 .
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Figure 16. A projection of the trajectory onto the a, - a2 plane: b/h # 1.0,:
mode (1,1) I , = co21, -0=0 0 =-0.05, g=0.05, b =0.03,

= 0.7692, = - 0.0353.
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Figure 17. The Fourier harmonic analysis of at,: blh-# 1.0,: mode (1,1)

COil - ,i - 0.0, 62 = - 0.05, # = 0.05, b = 0.03, fly = 0.7692,

-0.D353.
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Figure 18. The path of the tip-end of the beam for the case of an amplitude-
A

and phase-modulated motion: b/h #1.0,: mode (1,1) o(=JI (21,

61 = 0.0, 2 = - 0.05, u. = 0.05, b = 0.03, ,Jy = 0.7692, a = - 0.0353,
= 0.5.
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Figure 19. Variations of the modal amplitudes a, and a2 with the amplitude f2
of a primary excitation of the second mode when the second natural
frequency is twice the first natural frequency. It demonstrates the
Instability of the linear solution and the occurrence of the saturation
phenomenon.
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Figure 20. Two-degree-of-freedomn model tuned for a 2:1 Internal resonance
and accompanying linear mode shapes. Beam 1: 1.676mm x
12.827mm x 154.51mm, p,1 0.1 62g/mm, m, = 33.1g; Beam 2:
0.559mm x 12.802mm x 152.40mm, P2 = 0.0498g/mm,m 2 = 40.Og ; d

-90.525mm.
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Figure 21. Composite structure tuned for internal resonance and
accompanying flexural mode shapes. Beam 1: 2.159mm x 12.954mm
x 193.04mm, p, = 0.0586g/mm, m, = 11.7g; Beam 2: 2.159mm x
12.945mm x 203.20mm, P2 = 0.0531 g/mm, M2 = 14.7g ; d-
152.97mm.



50-

40 a U

200

30

(20 a;___ _ _ __ _ _

0 10 20 30 40

Exci tationi amiplitude (iiiili g's)

Figure 22. Amplitude-response curves when the excitation frequency is held
constant at 16.80 Hz.



2.000

0.4000 G O

a I _

oo..:N 1 i \~
0.3 :. F RE. (H." 20.00'

TASL - .AC_ . _...

LOG1 _ _ I i L1_ _ __ __ _ _ I __ __

0.0o~oo - - o-0.4000 .

0.3 L'N FRJ HZ, 20.00 -3..4000 VL7, 0. 4CZC

ST7IArN GAIGE ::

LOG ___
!

___ SMA17N GAGE V.-7;A:N GAGE m.

b __ 0. 4000

00L.:N FAEO(HZ.' 20.00
0 8L0 AC-..

2. 000 ______ _____________ ______ _I

I.

0.0 UN FP(GZ
,  20.00 --0.4000 VLTS 0.4CCC

A'AIN GAGE 1: -.

2.000 ______

LOG _____ ____________STMIAH SAGE V.-S--.AZN GAGE M.

_______ _______1.500 I
0.0 L* E (HZI 00

.0 0 0 _ _ _ _ _ _ _ _ _ _ _ _ _ _ L

0.0 LZN FIE3 (HZ; 20.00 -1.500 VLIS i.C

Figure 23. Spectra of the response, excitation, and cross-plot of two
strain-gage signals: (a) f = 16.10 Hz, 9b) f =16.14, and (c) f = 16.30
Hz.



11

a
$-.A:N O-A

L1 C

7= 4 2I

s~A:NGAG' b7

LOG , ___________

Figure 24. Spectra of a chaotic response: (a) zoom span around f 16.325 Hz

and (b) base band.
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Figure 25. Poincbre maps: (a) f = 16.30 Hz, periodically modulated response,
and (b) f = 16.325 Hz, chaotically modulated response.


